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ABSTRACT

Over the past few decades, many techniques have been developed for the

numerical solution of integral equations representing electromagnetic scattering

problems. However, a majority of these techniques are limited to electrically

small scatterers, i.e., below the resonance range. This is primarily

because the amount of CPU computer time and storage requirements become pro-

hibitive for large body scatterers. Recent work indicates that a procedure

based on the iterative conjugate gradient method can be incorporated into con-

ventional numerical methods in order to extend the range of application of the

techniques to larger geometries. In this paper we discuss the conjugate gra-

dient method and illustrate several ways in which it can be applied to electro-

magnetic scattering problems. The discussion includes mention of the advantages

of the method as compared to conventional approaches as well as some of its

limitations. In many practical scattering problems of interest at optical wave-

lengths, the method can provide a convenient means of treating problems which are

* electrically more than an order of magnitude larger than can be handled by other

techniques.
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1. INTRODUCTION

The numerical solution of integral equations is an invaluable technique for

[i the treatment of electromagnetic scattering problems. Asymptotic techniques,

such as the Geometric Theory of Diffraction (GTD) and its extensions [1], have

also been employed for solving high-frequency scattering problems. However,

this method is not well-suited for dealing with scatterers that cannot be con-

veniently described in terms of a limited number of canonical geometries for

which analytical diffraction coefficients are available. Furthermore, the GTD

is not very useful for determining the near-field behavior and cannot be applied

to many practical problems dealing with inhomogeneous or lossy scatterers. An

additional difficulty with this type of asymptotic approach is that it may be

impossible to estimate the accuracy of numerical results based on such tech-

niques. Integral equations, on the other hand, can be formulated for scatterers

of arbitrary shape [2], [3], [4]. Although few integral equations can be solved

U: exactly, numerical solutions are readily obtained by a systematic application of

techniques such as the method of moments (MoM) [3] - [6]. However, in the past,

the application of this approach has been limited to bodies that are electri-

cally small. The reason for this limitation will be evident from the discussion

below.

The moment-method procedure involves replacing the unknown in the integral

equation by N basis functions and reduces the problem to the solution of an

N-th order matrix equation. In most problems, the unknown density needed foi

p -

". accuracy is at least ten per linear wavelength. Thus, computer time and

memory requirements place an upper limit on the size of the body to be analyzed.

This is especially true at optical wavelengths where the size of the scatterer

is often comparable to or larger than the wavelength of the illumination source.

2
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Current research in computational electromagnetics includes efforts to develop

more efficient algorithms for the solution of integral equations, thereby per-

mitting the analysis of electrically larger and more complex geometries.

Because of their potential for efficiency and low storage requirements, itera-

tive methods are often incorporated into these algorithms [7].

In this paper, we review one such iterative technique, viz., the method of

conjugate gradients [81, which has been found useful for the solution of large

body scattering problems. Although this technique was introduced by Hestenes

and Stiefel more than thirty years ago for the iterative solution of matrix

equations, it has only recently been applied extensively to electromagnetic

scattering problems 191 - [191. Recent work has clarified the advantages and

the limitations of the method and has shown that the conjugate gradient method

can, in many cases, be used to solve practical problems which cannot tsil) )e

treated by the conventional, direct solution of matrix equations.

- The following section presents the conjugate gradient algorithm and iden-

tifies important features of the method. The remainder of the article presents

examples to illustrate a number of different ways in which the method can be

applied in practice.

3
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2. THE CONJUGATE GRADIENT METHOD

Hestenes and Stiefel introduced the conjugate gradient method in 1952 [8].

Since then, it has received much use in engineering and applied mathematics

[20] - [23]. Although the method can be applied to a quadratic functional on a

general Hilbert space H, for our purposes it is sufficient to consider specifi-

cally Euclidean space EN. For this space, the inner product and norm are

defined in the usual manner:

<f,g> - g*f (1)

1/2
* {f{{ - (<f,f>) (2)

The asterisk in Equation (1) denotes the transpose-conjugate matrix.

We wish to solve the linear system

LJ - E (3)

where E is a known N-dimensional vector, J is an unknown N-dimensional vector,

r- and L is a nonsingular N x N matrix. Let (Pi} be a set of N linearly indepen-

dent vectors in EN. The unknown vector J can be represented as

J - alPI + a2 P2 
+ "'" + NPN (4)

If the P-vectors are constrained to satisfy the orthogonality requirement

<LA LPi, Pj> = 0 i * J (5)

!7;where LA is the adjoint of L (the transpose-conjugate matrix), the coefficients

in Equation (4) are given by

<E,LP >
a ILP 2  (6)n 2

The approach embodied in Equations (4) - (6) is known as the conjugate direction

I method [8]. Note that in the literature, this procedure is often presented for

the special case where L is a symmetric and positive definite matrix. We make

14
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no such restriction, and as a result the formulas presented here differ somewhat

from those found, for instance, in [201.

The conjugate gradient method is a conjugate direction method which is

augmented with a recursive procedure for generating the P-vectors according to

(5). The P-vectors generated by the gradient algorithm, are, in fact,

designed to represent the solution corresponding to a specific right-hand side E

in (3). As a result, the solutions of most equations can be adequately repre-

sented by far less than the full set of N vectors [23]. This is an attractive

feature of the conjugate gradient method over most other iterative techniques,

providing that one is dealing with a .ingle incident field.

The algorithm requires the user to provide Jot an initial estimate of the

unknown J. Normally, for well-conditioned systems, the choice of J has little

effect on the number of iterations required for a solution, and a zero estimate -

is often used. However, it is important to note that the fiexibility of

accepting an initial estimate permits the user to terminate the iteration and

start anew, using the current estimate of the solution as the initial estimate.

This feature may be important when dealing with large-order equations in order

to combat the round-off errors inevitably introduced due to the finite word-

length of a computer.

A common form of the complete algorithm is given as follows [241 - [261:

Initial steps

Ro  L o - E (7)

P -LAR (8)

Iterative steps k 1,2,...

5-



<E,LPk> IILAR.I 1 2  -::-
C- I ILPk12 - IILPk 12 (9)

Jk T Jk- I + QkPk (1O

Rk LJk E Rkl + ckLPk (11)

11LA%112

k  A Rk1 2  (12)

P k+1 kPk LRk (13)

The residual norm

II% 1 I, LJ -Eli
rH ikE (14)

decreases monotonically as the algorithm progresses and is useful as an indica-

tion of the average error in the solution after k steps. The algorithm is

usually terminated when the residual norm decreases to some prescribed value.

The conjugate gradient algorithm can be derived by considering the minimi-

zation of the quadratic functional [241, [25]

F(Jk) =1J H 2  (15)

Specifically, the P-functions are found by reducing the gradients of F at each

estimate of J to an orthogonal set satisfying Equation (5). A set of such func-
A

tions is said to be conjugate with respect to the operator L'L, hence, the name

"conjugate gradients."

In theory, the solution to an N-dimensional system will be found in at most

N iterations. Even if no unique solution exists, the algorithm will converge in

theory to the "minimum-norm" solution [221.

6
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Based upon our own observations, a numerical solution accurate to several

digits is found in N/3 iterations or less for most well-conditioned systems.

"* The residual norm given by (14) would, for instance, quickly decrease from its

initial value to something less than 1 X 10 . For poorly conditioned systems,

the convergence is naturally slower and is exacerbated by round-off errors in

any calculation involving the operator [221, [231. Under these conditions, it

is not uncommon for the residual norm to remain relatively constant for many

S-iterations or even to grow under the influence of round-off errors. This situ-

ation arises occasionally in practice, and under such circumstances the algo-

rithm may not converge. This is true in spite of the fact that, theoretically,

the convergence of the gradient method is guaranteed in the absence of any

machine error. There are numerous variations on the conjugate gradient method

as it is presented here, some of which involve less computation and may be freer

from the round-off problem [231. This topic is currently under investigation by

* the authors.

It is often necessary in practice to analyze a single scatterer for many

different sources of illumination. Equivalently, it is desirable to have an

efficient means for solving Equation (3) for many different right-hand sides E.

If Gaussian elimination is used to generate the inverse of a large matrix, any

number of right-hand sides can be treated at an almost negligible additional

* cost. In theory, the conjugate gradient method could be adapted to test many

sources efficiently by simultaneously expanding each solution in terms of the

single set {Pi}. Unfortunately, complications arise which usually prevent this

from being practical. As mentioned earlier, the P-vectors generated for a given

E are specifically geared to represent one solution. For instance, in a case

where the solution exhibited even-symmetry, all of the P-vectors generated to

represent the solution were even-symmetric. Our experiences indicate that,

.7
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except in special cases, the entire set {Pij, where the upper limit of i could I
be on the order of N for an N x N matrix, will be needed to treat several right-

hand sides at one time. Because the conjugate gradient method uses a recursive

algorithm to generate these functions, round-off errors progressively degrade -

their actual orthogonality. In practice, the severity of the round-off errors

prevents the successful generation of the necessary vectors. For this reason, it ii
appears that a nonrecursive algorithm for generating the P-vectors would be a

better candidate for the treatment of multiple right-hand sides. Any practical

method for treating large-order systems would do so without the need to store

the P-vectors in computer memory. At this time, no approach satisfying these _

constraints is known to the authors, although they are currently experimenting

with some algorithms that might be suitable for this purpose. Of course, until

such a scheme is available, the conjugate gradient method may still be used to

treat each right-hand side independently.

Certain integral equations suffer from "resonances" which occur when the j
equation permits homogeneous solutions, such as at frequencies where a scatterer

is also a resonant cavity [271 - (291. When this occurs, the operator is ill-

conditioned, and the numerical solution is corrupted by the presence of the ""

homogeneous solution and by round-off errors in the solution process. The con-

j Jugate gradient method can be useful as a flag to identify this situation, as

the convergence of the method is significantly slower when the operator is

poorly conditioned [23]. Methods for circumventing the difficulties arising in

the "resonance" situation have been discussed elsewhere [27] - [291.

The above discussion is a brief introduction to the conjugate gradient

method. Readers desiring additional information are encouraged to consult

references (81, [101, [111, (201 - [261. In the following section, several

8



scattering problems are presented as examples to illustrate the application of

the method.

9
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3. APPLICATIONS

The conjugate gradient algorithm can be applied directly to any discrete

operator equation. The first step in a solution process is to select a

discretization scheme and apply it to the integral equation. The method of

moments is a general technique for converting continuous equations to matrix

equations [51, and is used extensively in computational electromagnetics.

However, the moment-method matrix equation for large-body scattering problems

often exceeds the limits of computer memory and iterative methods which do not

require the N x N matrix to be stored offer advantages. The first example to

follow illustrates the conjugate gradient solution of a matrix equation with

emphasis on minimal storage requirements.

Since the integral equations of interest are often convolutional in form,

the Fast Fourier Transform (FFT) algorithm can in many cases be adapted to per-

form the convolution. Equations written as circular (periodic) or linear con-

volutions can be solved exactly using the FFT, and at a considerable savings

over the comparable matrix multiplication. Examples of these situations are

given below.

An alternate approach is to use the FFT as an approximation to the con-

tinuous Fourier transform, in order to compute convolution integrals which can-

not be easily put into the form of discrete convolutions. This procedure is

also discussed below.

Although these techniques can be applied to any size problem, we are pri-

marily interested in geometries which are electrically too large to handle with

conventional matrix methods. Comparisons between the execution times of the

iterative methods and conventional matrix methods have been presented for small

10



geometries [15], [18]. To our knowledge, no systematic comparison has been

published for large-order equations.

3.1. Solution of Matrix Equations

If the conjugate gradient algorithm is terminated after several digits of

accuracy are obtained in the solution, it is often comparable to, and sometimes

better in efficiency than, the Gaussian elimination solution of a single matrix

equation [26]. In the elimination process, the N x N matrix is altered and must

be stored in computer memory or in an out-of-core peripheral unit. This places

an upper limit on the size of a scatterer which can be easily treated by matrix

methods. The conjugate gradient method can be used to extend this limit, pro-

vided that the matrix elements are sufficiently redundant or can be generated

from a relatively simple function subroutine. Each matrix element is needed

twice per iteration; therefore, this approach will only be practical for large

systems if the elements can be generated efficiently.

Several examples which were developed for conventional matrix solution and

are well-suited for the iterative scheme include two-dimensional dielectric

-, scatterers [301, [311, two-dimensional perfectly conducting scatterers [32], and

three-dimensional dielectric bodies (33]. All of these are based on moment-

method formulations using so-called pulse basis functions and point-matching,

and all the matrix elements are closed-form expressions. For illustration, con-

sider TM wave scattering by perfectly conducting two-dimensional cylinders, such

as discussed by Harrington [32]. The matrix elements are given by

,. -30 w kdh -i In kn1 tn ] (16)

Imn 30 wkdn H 2  (kRmn) (17)

where k is 2w/A, R is the distance between the center of the mth and nth
on

*~~~ ~~~ . . .- ..- 4. . LA



subdivisions of the cylinder surface, dn is the width of the n-th subdivision,

and H(2)(-) is the Hankel function of the second kind. In order to generate the0

matrix elements efficiently, the Hankel functions are interpolated from a look-

up table. The size of the table is proportional to the maximum linear dimension

of the scatterer, yet requires much less storage than the N x N matrix it

replaces.

iV. Results for the conducting cylinder example were obtained for problems

involving 399 x 399 matrices. Matrix equations of this order are beyond the in-

core storage capabilities of most modern computers. Figure 1 shows the magni-

tude of the surface current density on a square conducting cylinder at three

frequencies. Similar results can be obtained for large dielectric cylinders

that may, in general, be lossy and inhomogeneous. Figure 2 shows the polariza-

tion current induced inside a lossy dielectric cylinder consisting of over 500

cells [341. We note that van den Berg has applied the conjugate gradient method

to solve a similar problem involving 2500 cells in a dielectric cylinder [111],

L 1121.

JIt is believed that the iterative method combined with the look-up table

approach will permit many types of scattering problems to be solved for large

geometries. The authors have used it for the examples discussed above, and

found the efficiency satisfactory for large-order equations. In one case, an

equation of order 1216 was solved on a Perkin-Elmer OS-32 computer [34].

However, not all integral equations can be reduced to matrix equations with

simple elements; the complexity of the elements is usually directly proportional

to the sophistication (and accuracy) of the discretization scheme used. As the

complexity of each matrix element increases, the efficiency of the process

decreases. Yet, even at its worst, the method offers an alternative to Gaussian

elimination for the solution of large moment-method matrix equations.

12
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Figure 2. Polarization current induced inside a lossy dielectric cylinder.
Central region has er = 51 - J31, outer region has r 5.6 - J1.1.
The current is normalized to the incident magnetic field.
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3.2. Solution of Periodic Problems Using the FFT

An example of a problem well-suited for solution by the conjugate gra-

dient method is the frequency-selective surface (FSS) shown in Figure 3.

Frequency-selective meshes find many applications at optical and infrared wave-

lengths as band pass filters. The geometry is an infinite-periodic extension of

a single rectangular cell, and for plane-wave scattering an integral equation

for the vector components of the current on the metallic portion of the cell can

be derived using Floquet's theorem [35). The entire rectangular cell can be

discretized via the moment method to yield a vector equation containing scalar

components of the form

M N

ij nin i-m,J-n

Equation (18), written in the space domain, represents a circular discrete con-

volution. The K of Equation (18) are actually each a double-infinite sum-
pq

mation over the Floquet modes. Equation (18) can be written in the discrete

Fourier transform domain as

n J K a (19)

It may be undesirable to compute 00 by applying the FFT to the Kij , and as an

alternative, the can be approximated by samples of the continuous Fourier

transform of K, which is usually a simple analytic expression (not a summation)

[361. This suggests that a significant savings in computation can be realized

by operating in the spectral domain. This entails using the FFT to transform
Jnm to J, performing the multiplication indicated in equation (19), and using

the inverse FFT to find E from E * This approach is often used for problemsij a

involving periodic geometries [37], [38].

15
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Figure 3. Frequency selective surface.
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This type of problem is ideally suited for solution by the conjugate gra-

dient method because of the low storage requirements imposed by the kC and the

efficiency of the FFT algorithm. The approach permits a wide range of choices

of basis and testing functions in a moment-method formulation as long as the

discretization of the rectangular cell is evenly spaced in both dimensions.

However, whereas a conventional moment-method approach is limited by the size

matrix that must be stored, the conjugate gradient method permits the treatment

of much larger problems. Recently, the conjugate gradient method was used to

analyze an FSS with over 4000 unknowns [171.

3.3. Problems Which Are Linear Discrete Convolutions

The previous example discussed the use of the conjugate gradient method for

periodic geometries. The circular discrete convolutions that arise can be

performed efficiently using the FFT. Certain nonperiodic geometries can be

discretized in such a way that the associated equations become linear discrete

convolutions, and these can also be computed with the FFT. In the latter case,

zero-padding" must be incorporated into the algorithm [39]. Examples of

problems well-suited to this approach are planar structures and two- and three-

dimensional dielectric bodies.

As an illustration, consider TE-wave scattering by an imperfectly con-

ducting, or resistively coated planar strip. Following Ray and Mtittra (181, the

discretized integral equation can be written as
L.

N-1
Em inRmJm - JnGm.n (20)

n-Cl-N)

for the choice of basis functions pictured in Figure 4. Rm is the resistance of

the m-th strip as defined by Senior [401. Since (20) contains a discrete con-

volution, the FFT can be incorporated into a conjugate gradient algorithm to

provide an efficient solution. ay and Httra [18] have shown that, in addition

17
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Figure 4. Relative position of the basis functions on the strip.
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to a savings in storage, the conjugate gradient method achieves a savings in

computation time as compared to the Gaussian elimination solution of Equation

(20) 118].

An example of the results for one strip configuration is pictured in Figure

* 5, following Ray and Mittra [18]. The three-dimensional problem of scattering

from resistive plates has been analyzed using a technique analogous to that pre-

sented for the resistive strip, and in particular, used for plate sizes

requiring over 3000 unknowns [181, [19].

3.4. Use of the FFT in More General Problems

The above examples illustrate several ways in which the conjugate gradient

method can be incorporated into the solution process for large scattering

* problems. In every case, the moment-method formulation is adhered to and

extended to treat larger geometries. However, the above examples all suffer

from some limitation. The most general approach is the matrix solutiont yet it

may only be practical if the matrix elements are relatively simple. The

FFT-based approaches discussed above are superb for certain restricted

geometries, but aside from planar structures and finite circular cylinders, the

only nonperiodic scatterers which can be treated are penetrable dielectric

bodies. The limitation is due to the discretization process itself; in all the

cases discussed above, the conjugate gradient algorithm was used to solve a

numerical system resulting from an application of the method of moments to the

original problem. The moment method technique is well-understood and very

systematic; however, other discretization schemes may be better suited for use

with the FFT.

An alternative approach to solving scattering problems is based upon a pro-I

cedure known primarily by the name "Spectral Iterative Technique" [171, [181,

[341, [371, [411, [421. To distinguish this technique, which involves using the

19



rri

- 1.
mm ,.i28 0

the' contan sufc resisance

noma incidence

02

eZ!

V

,-: X 2--

|-26-.-166.6.651. 1.2.

Fiue .Mantueoftindcdcretonasrpfrseea auso

L_

--,1 - .t-I. --*S 8. e. 1.$ S2.



r

FFT in an iterative procedure, from the techniques discussed above using the FFT

with the conjugate gradient method, we introduce the title "Spectral Iterative"

(SI) to those approaches where a continuous convolution integral is approximated

• using the FFT. In the previous examples, the FFT was used to perform discrete

* convolutions. In the SI approach, the quantities of interest are sampled over a

regular grid of points. This sampling scheme is distinctly different from the

moment-method discretization scheme, and thus should be considered a separate

method. The conjugate gradient approach discussed in the examples given above

*is really nothing more than a way to apply the moment method to larger problems.

The conjugate gradient iterative procedure may also be used as an SI technique,

in which the moment method formulation is avoided in favor of a sampling

discretization that anticipates the use of the FFT. The SI approach was used

in the past with an algorithm based upon an iteration procedure that did not

S guarantee convergence. The conjugate gradient SI method does ensure con-

vergence, and thus permits the SI technique to be applied to many additional

scattering problems.

For instance, van den Berg and De Hoop have used the conjugate gradient

method to analyze scattering from a rough interface [131. Their approach incor-

porated an FFT approximation to a Fourier transform integral, and thus is an SI

technique. The SI approach offers a general method for the treatment of large-

body scatterers, as it appears to have few fundamental limitations as to the

*types of problems that can be treated with the FFT. Future work in this area

will produce a systematic way of using the method and analyzing the accuracy of

the results.
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4. DISCUSSION

We have presented the conjugate gradient algorithm and discussed some of

its features. Many of the remarks on the attributes and limitations of the

method are based upon our own observations made when using the method to solve

-* pertinent integral equations. In some cases, our observations may not concur

with the recommendations of others; for instance, it has been suggested that the

conjugate gradient method is useful for the solution of very ill-conditioned

equations [101 and that it is suited for handling multiple incident fields.

However, our findings seem to be. at odds with these suggestions. As the method

has only recently been applied to problems in electromagnetic scattering, it is

expected that the future will provide additional clarification.

The advantages of the conjugate gradient method for the solution of large

scattering problems lie primarily in the fact that in many cases no alternatives

exist aside from a brute-force Gaussian elimination solution of the moment-

method matrix using out-of-core storage. For many equations, the conjugate

gradient method permits the solution of large problems without a corresponding

need for large blocks of computer memory. The conjugate gradient method may not

K; be the best choice in a given situation; it should be considered an alternative

which may or may not be useful depending on the problem. Needless to say, much

work remains in the extension of this technique to general scattering problems.
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